Role of melatonin on renal ischemia-reperfusion injury
DISCOVERIES REPORTS (ISSN 2393249X), 2022, volume 5

REVIEW ARTICLE

GO BACK to 2022, VOLUME 5

CITATION: Ahammed MR, Joshi A, Kafle S, Mumtaz A, Thakkar K, Nasir YM et al. Role of melatonin on renal ischemia-reperfusion injury. Discoveries Reports 2022; 5(1): e29. DOI: 10.15190/drep.2022.3

Role of melatonin on renal ischemia-reperfusion injury

Md Ripon Ahammed1,*, Amey Joshi1, Sunam Kafle1, Aqsa Mumtaz1, Keval Thakkar1, Yusra Minahil Nasir1, Subarna Shrestha1, Heeya Shah1, Gaayathri Krishnan1, Fariha Noor Ananya1, Eugenio Angueira2

(1) Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL, USA
(2) Larkin Community Hospital, South Miami, FL, USA

* Corresponding author: Dr. Md Ripon Ahammed, Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL, USA. Email: ripon.ahammed90@gmail.com

Abstract

Acute kidney injury secondary to ischemia-reperfusion injury can occur after an infarction, sepsis or a renal transplantation. If not treated promptly, it can be fatal due to widespread oxidative tissue injury and inflammation. Melatonin, previously known for its circadian regulatory properties, has been of recent interest in preventing and treating renal ischemic reperfusion injury because of its antioxidant and anti-inflammatory properties. In this review we summarize the pharmacokinetic properties of melatonin, the pathophysiology of renal ischemic reperfusion injury and how we can use melatonin to prevent renal ischemic reperfusion injury. Furthermore, we discuss the recent clinical trials evaluating the impact of melatonin on the renal ischemic reperfusion injury. This review summarizes the current evidence on the beneficial effects of melatonin and prospects using melatonin to improve patient care and prevent fatalities from acute kidney injury. The initial data on the effects of melatonin in preventing and treating renal ischemic reperfusion injury looks promising. However, more randomized control trials on humans need to be conducted to evaluate the complete impact of melatonin on the renal ischemic reperfusion injury, the correct formulations, dosage and the possible adverse effects. Only then can melatonin be used as an agent to prevent renal ischemic reperfusion injury.

References

1.  Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature’s most versatile biological signal? FEBS J. 2006 Jul;273(13):2813–38.
2. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol. 2017 Apr;15(3):434–43.
3. Tan D-X, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules. 2015 Oct 16;20(10):18886–906.
4. Quera-Salva M-A, Claustrat B. [Melatonin: Physiological and pharmacological aspects related to sleep: The interest of a prolonged-release formulation (Circadin®) in insomnia]. Encephale. 2018 Dec;44(6):548–57.
5. Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci. 2019 Mar 11;20(5).
6. Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci. 1995 Feb;16(2):50–6.
7. Costa EJ, Shida CS, Biaggi MH, Ito AS, Lamy-Freund MT. How melatonin interacts with lipid bilayers: a study by fluorescence and ESR spectroscopies. FEBS Lett. 1997 Oct 13;416(1):103–6.
8. Sheridan AM, Bonventre JV. Pathophysiology of ischemic acute renal failure. Contrib Nephrol. 2001;(132):7–21.
9. Murugan R, Kellum JA. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol. 2011 Apr;7(4):209–17.
10. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009 Jan;130(1):41–50.
11. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011 Apr;7(4):189–200.
12. Cho JH, Tae H-J, Kim I-S, Song M, Kim H, Lee T-K, et al. Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol. 2019 Oct;320:112983.
13. Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007 Jan;42(1):28–42.
14. Grivas TB, Savvidou OD. Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis. 2007 Apr 4;2:6.
15. Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6133–7.
16. Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994 Feb;24(2):101–46.
17. Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. Physiology. 2014 Sep;29(5):325–33.
18. Kopustinskiene DM, Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics. 2021 Jan 20;13(2). Available from: http://dx.doi.org/10.3390/pharmaceutics13020129
19. Song Y-J, Zhong C-B, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother. 2020 Aug;128:110260.
20. Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ. Melatonin and circadian biology in human cardiovascular disease. J Pineal Res. 2010 Aug;49(1):14–22.
21. Dominguez-Rodriguez A, Abreu-Gonzalez P, de la Torre-Hernandez JM, Consuegra-Sanchez L, Piccolo R, Gonzalez-Gonzalez J, et al. Usefulness of Early Treatment With Melatonin to Reduce Infarct Size in Patients With ST-Segment Elevation Myocardial Infarction Receiving Percutaneous Coronary Intervention (From the Melatonin Adjunct in the Acute Myocardial Infarction Treated With Angioplasty Trial). Am J Cardiol. 2017 Aug 15;120(4):522–6.
22. Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, et al. Nocturnal urinary melatonin excretion is associated with non-dipper pattern in elderly hypertensives. Hypertens Res. 2013 Aug;36(8):736–40.
23. Grossman E, Laudon M, Yalcin R, Zengil H, Peleg E, Sharabi Y, et al. Melatonin reduces night blood pressure in patients with nocturnal hypertension. Am J Med. 2006 Oct;119(10):898–902.
24. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res. 2014 Nov;57(4):442–50.
25. Ferrari E, Fioravanti M, Magri F, Solerte SB. Variability of interactions between neuroendocrine and immunological functions in physiological aging and dementia of the Alzheimer’s type. Ann N Y Acad Sci. 2000;917:582–96.
26. Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pévet P, Ravid D, et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res. 1990 Sep;528(1):170–4.
27. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018 Aug;175(16):3190–9.
28. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, et al. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci. 2017 Nov;74(21):3989–98.
29. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010 Sep;62(3):343–80.
30. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012 Apr;351(2):152–66.
31. Smirnov AN. Nuclear melatonin receptors. Biochemistry. 2001 Jan;66(1):19–26.
32. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults. N Engl J Med. 2017 Jan;376(1):11–20.
33. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005 Nov;16(11):3365–70.
34. Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 2015 Jun;5(2):52–67.
35. Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol. 2003 Apr;284(4):F608-27.
36. Lauriat S, Linas SL. The role of neutrophils in acute renal failure. Semin Nephrol. 1998 Sep;18(5):498–504.
37. Lien Y-HH, Lai L-W, Silva AL. Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci. 2003 Dec;74(5):543–52.
38. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.
39. Sato W, Yuzawa Y, Kadomatsu K, Tayasu T, Muramatsu H, Muramatsu T, et al. Midkine expression in the course of nephrogenesis and its role in ischaemic reperfusion injury. Nephrol Dial Transplant. 2002;17 Suppl 9:52–4.
40. Prompunt E, Sanit J, Barrère-Lemaire S, Nargeot J, Noordali H, Madhani M, et al. The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Exp Ther Med. 2018 Jun;15(6):5231–42.
41. Danobeitia JS, Djamali A, Fernandez LA. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair. 2014 Nov;7:16.
42. Rabb H. Role of leukocytes and leukocyte adhesion molecules in renal ischemic-reperfusion injury. Front Biosci. 1996 Jan;1:e9-14.
43. Cervantes M, Moralí G, Letechipía-Vallejo G. Melatonin and ischemia-reperfusion injury of the brain. J Pineal Res. 2008 Aug;45(1):1–7.
44. Kobroob A, Peerapanyasut W, Chattipakorn N, Wongmekiat O. Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies. Oxid Med Cell Longev. 2018 Feb;2018:3082438.
45. Yang J, Liu H, Han S, Fu Z, Wang J, Chen Y, et al. Melatonin pretreatment alleviates renal ischemia-reperfusion injury by promoting autophagic flux via TLR4/MyD88/MEK/ERK/mTORC1 signaling. FASEB J. 2020 Sep;34(9):12324–37.
46. Maldonado MD, Murillo-Cabezas F, Terron MP, Flores LJ, Tan DX, Manchester LC, et al. The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. J Pineal Res. 2007 Jan;42(1):1–11.
47. Allegra M, Reiter RJ, Tan D-X, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin’s interaction with reactive species. J Pineal Res. 2003 Jan;34(1):1–10.
48. Kurcer Z, Parlakpinar H, Vardi N, Tasdemir S, Iraz M, Fadillioglu E, et al. Protective effects of chronic melatonin treatment against renal ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Exp Clin Endocrinol Diabetes. 2007 Jun;115(6):365–71.
49. Kim J-Y, Leem J, Jeon EJ. Protective Effects of Melatonin Against Aristolochic Acid-Induced Nephropathy in Mice. Biomolecules. 2019 Dec;10(1).
50. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004 Jan;36(1):1–9.
51. Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005 Sep;39(2):99–104.
52. Shi S, Lei S, Tang C, Wang K, Xia Z. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep. 2019 Jan;39(1).
53. Ersoz N, Guven A, Cayci T, Uysal B, Turk E, Oztas E, et al. Comparison of the efficacy of melatonin and 1400W on renal ischemia/reperfusion injury: a role for inhibiting iNOS. Ren Fail. 2009;31(8):704–10.
54. Pace J, Paladugu P, Das B, He JC, Mallipattu SK. Targeting STAT3 signaling in kidney disease. Am J Physiol Renal Physiol. 2019 Jun;316(6):F1151–61.
55. Xu M-J, Feng D, Wang H, Guan Y, Yan X, Gao B. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J Am Soc Nephrol. 2014 May;25(5):967–77.
56. Dube S, Matam T, Yen J, Mang HE, Dagher PC, Hato T, et al. Endothelial STAT3 Modulates Protective Mechanisms in a Mouse Ischemia-Reperfusion Model of Acute Kidney Injury. J Immunol Res. 2017 Oct;2017:4609502.
57. Chang Y-C, Hsu S-Y, Yang C-C, Sung P-H, Chen Y-L, Huang T-H, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med. 2016 Aug;241(14):1588–602.
58. Kong P-J, Byun J-S, Lim S-Y, Lee J-J, Hong S-J, Kwon K-J, et al. Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes. Korean J Physiol Pharmacol. 2008 Apr;12(2):37–41.
59. Nava M, Romero F, Quiroz Y, Parra G, Bonet L, Rodríguez-Iturbe B. Melatonin attenuates acute renal failure and oxidative stress induced by mercuric chloride in rats. Am J Physiol Renal Physiol. 2000 Nov;279(5):F910-8.
60. Hadj Ayed Tka K, Mahfoudh Boussaid A, Zaouali MA, Kammoun R, Bejaoui M, Ghoul Mazgar S, et al. Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Anal Cell Pathol. 2015 Jul;2015:635172.
61. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res. 2017 Aug;63(1).
62. Bai X-Z, He T, Gao J-X, Liu Y, Liu J-Q, Han S-C, et al. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci Rep. 2016 Sep;6:32199.
63. Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res. 2019 May 15;11(5):2887–907.
64. Sener G, Sehirli AO, Keyer-Uysal M, Arbak S, Ersoy Y, Yeğen BC. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res. 2002 Mar;32(2):120–6.
65. Rodríguez-Reynoso S, Leal C, Portilla-de Buen E, Castillo JC, Ramos-Solano F. Melatonin ameliorates renal ischemia/reperfusion injury. J Surg Res. 2004 Feb;116(2):242–7.
66. Kaçmaz A, User EY, Sehirli AO, Tilki M, Ozkan S, Sener G. Protective effect of melatonin against ischemia/reperfusion-induced oxidative remote organ injury in the rat. Surg Today. 2005;35(9):744–50.
67. Zhang W-H, Li J-Y, Zhou Y. Melatonin abates liver ischemia/reperfusion injury by improving the balance between nitric oxide and endothelin. Hepatobiliary Pancreat Dis Int. 2006 Nov;5(4):574–9.
68. Takhtfooladi H, Takhtfooladi M, Moayer F, Mobarakeh S. Melatonin attenuates lung injury in a hind limb ischemia-reperfusion rat model. Rev Port Pneumol. 2015 Jan;21(1):30–5.
69. Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, et al. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res. 2014 Nov;57(4):357–66.
70. Wang M-L, Wei C-H, Wang W-D, Wang J-S, Zhang J, Wang J-J. Melatonin attenuates lung ischaemia-reperfusion injury via inhibition of oxidative stress and inflammation. Interact Cardiovasc Thorac Surg. 2018 May;26(5):761–7.
71. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–4.
72. Goldstein S, Squadrito GL, Pryor WA, Czapski G. Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Radic Biol Med. 1996;21(7):965–74.
73. Reiter RJ. Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radicals. Eur J Endocrinol. 1996 Apr;134(4):412–20.
74. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabó C. Melatonin is a scavenger of peroxynitrite. Life Sci. 1997;60(10):PL169-74.
75. Panah F, Ghorbanihaghjo A, Argani H, Haiaty S, Rashtchizadeh N, Hosseini L, et al. The effect of oral melatonin on renal ischemia-reperfusion injury in transplant patients: A double-blind, randomized controlled trial. Transpl Immunol. 2019 Dec;57:101241.
76. Ahmadiasl N, Banaei S, Alihemmati A, Baradaran B, Azimian E. The anti-inflammatory effect of erythropoietin and melatonin on renal ischemia reperfusion injury in male rats. Adv Pharm Bull. 2014;4(1):49–54.
77. Yilmaz M, Mogulkoc R, Baltaci AK. Effect of Three-week Zinc and Melatonin Supplementation on the Oxidant-Antioxidant System in Experimental Renal Ischemia-Reperfusion in Rats. Acta Clin Croat. 2015 Dec;54(4):395–401.
78. Li Z, Nickkholgh A, Yi X, Bruns H, Gross M-L, Hoffmann K, et al. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009 May;46(4):365–72.
79. Deniz E, Colakoglu N, Sari A, Sonmez MF, Tugrul I, Oktar S, et al. Melatonin attenuates renal ischemia-reperfusion injury in nitric oxide synthase inhibited rats. Acta Histochem. 2006 Jun;108(4):303–9.
80. Oguz E, Yilmaz Z, Ozbilge H, Baba F, Tabur S, Yerer MB, et al. Effects of melatonin on the serum levels of pro-inflammatory cytokines and tissue injury after renal ischemia reperfusion in rats. Ren Fail. 2015 Mar;37(2):318–22.
81. Cetin N, Suleyman H, Sener E, Demirci E, Gundogdu C, Akcay F. The prevention of ischemia/reperfusion induced oxidative damage by venous blood in rabbit kidneys monitored with biochemical, histopatological and immunohistochemical analysis. J Physiol Pharmacol. 2014 Jun;65(3):383–92.
82. de Souza AVG, Golim MA, Deffune E, Domingues MAC, de Carvalho LR, Vianna IG, et al. Evaluation of renal protection from high doses of melatonin in an experimental model of renal ischemia and reperfusion in hyperglycemic rats. Transplant Proc. 2014 Jun;46(5):1591–3.
83. Atılgan D, Parlaktas BS, Uluocak N, Erdemir F, Fırat F, Erkorkmaz U, et al. Effects of melatonin on partial unilateral ureteral obstruction induced oxidative injury in rat kidney. Urol Ann. 2012 May;4(2):89–93.